Random Oracles in the Real World

Gaëtan Leurent Thomas Peyrin

Eurocrypt 2018 Rump Session

Gaëtan Leurent, Thomas Peyrin

Practical Homomorphic MACs for Arithmetic Circuits.	
Practical Multilinear Maps over the Integers.	
Practical Bootstrapping in Quasilinear Time.	
Valiant's Universal Circuit is Practical.	
Practical Functional Encryption for Quadratic Functions with Applications to Pre Encryption.	
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfusc	

Practical Homomorphic MACs for Arithmetic Circuits.	[EC13]
Practical Multilinear Maps over the Integers.	
Practical Bootstrapping in Quasilinear Time.	
Valiant's Universal Circuit is Practical.	
Practical Functional Encryption for Quadratic Functions with Applications to Pre Encryption.	
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfusc	

Practical Homomorphic MACs for Arithmetic Circuits.	[EC13]
Practical Multilinear Maps over the Integers.	[CR13]
Practical Bootstrapping in Quasilinear Time.	
Valiant's Universal Circuit is Practical.	
Practical Functional Encryption for Quadratic Functions with Applications to Pre Encryption.	
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfusca	

Practical Homomorphic MACs for Arithmetic Circuits.	[EC13]
Practical Multilinear Maps over the Integers.	[CR13]
Practical Bootstrapping in Quasilinear Time.	[CR13]
Valiant's Universal Circuit is Practical.	
Practical Functional Encryption for Quadratic Functions with Applications to Pre Encryption.	
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfuse	

Practical Homomorphic MACs for Arithmetic Circuits.	[EC13]
Practical Multilinear Maps over the Integers.	[CR13]
Practical Bootstrapping in Quasilinear Time.	[CR13]
Valiant's Universal Circuit is Practical.	[EC16]
Practical Functional Encryption for Quadratic Functions with Applications to Pre- Encryption.	
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfusca	

Practical Homomorphic MACs for Arithmetic Circuits.	[EC13]
Practical Multilinear Maps over the Integers.	[CR13]
Practical Bootstrapping in Quasilinear Time.	[CR13]
Valiant's Universal Circuit is Practical.	[EC16]
Practical Functional Encryption for Quadratic Functions with Applications to Pred Encryption.	dicate [CR17]
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfusca	

Practical Homomorphic MACs for Arithmetic Circuits.	[EC13]
Practical Multilinear Maps over the Integers.	[CR13]
Practical Bootstrapping in Quasilinear Time.	[CR13]
Valiant's Universal Circuit is Practical.	[EC16]
Practical Functional Encryption for Quadratic Functions with Applications to Pred Encryption.	dicate [CR17]
Another Step Towards Realizing Random Oracles: Non-Malleable Point Obfusca	tion [EC18]

A New Model

- What if we don't have access to these powerful constructions?
 - Very restricted model: craptography

The CRAP model

- Computation is limited to $\mathcal{O}(1)$.
- Hardware leaks in unknown ways.
- Users are stupid.
- Oracles not available.

A new kind of cryto!

- Completely theoretical, but interesting questions
 - Single-Party Computation is possible
 - Fully Homomorphic Computation is possible
- Maybe we could have a few papers in the CRAP model in the program?

Gaëtan Leurent, Thomas Peyrin

A New Model

- What if we don't have access to these powerful constructions?
 - Very restricted model: craptography

The CRAP model

- Computation is limited to $\mathcal{O}(1)$.
- Hardware leaks in unknown ways.
- Users are stupid.
- Oracles not available.

A new kind of cryto!

- Completely theoretical, but interesting questions
 - Single-Party Computation is possible
 - Fully Homomorphic Computation is possible
- Maybe we could have a few papers in the CRAP model in the program?

Gaëtan Leurent, Thomas Peyrin

A New Model

- What if we don't have access to these powerful constructions?
 - Very restricted model: craptography

The CRAP model

- Computation is limited to $\mathcal{O}(1)$.
- Hardware leaks in unknown ways.
- Users are stupid.
- Oracles not available.
- A new kind of cryto!
 - Completely theoretical, but interesting questions
 - Single-Party Computation is possible
 - Fully Homomorphic Computation is possible
 - Maybe we could have a few papers in the CRAP model in the program?

Gaëtan Leurent, Thomas Peyrin

Replacing Random Oracles in the CRAP Model

• Public function
$$\{0,1\}^* \rightarrow \{0,1\}^n$$

Collision resistance

Given F, hard to find $M_1 \neq M_2$ s.t. $F(M_1) = F(M_2)$.

- No key: no good security definition
 - Any fixed function has collisions...

Hash functions cryptanalysis

Collision resistance

Find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Breaks signatures (in theory)

Chosen-prefix collision resistance

• Given P_1, P_2 , find $M_1 \neq M_2$ s. t. $H(P_1 || M_1) = H(P_2 || M_2)$

- Breaks certificates
 [Stevens & al, Crypto'09]
- Breaks TLS, IPsec, SSH
 [Bhargavan & L, NDSS'16]

1993 Designed by NSA

1995 SHA-0 tweaked to SHA-11998 SHA-0 collision attack2005 SHA-1 collision attack in theory2017 SHA-1 collision attack in practice

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - ▶ 5% of top 1M HTTPS servers prefer SHA-1

Can we do chosen-prefix collisions?

Gaëtan Leurent, Thomas Peyrin

'Tis but a scratch.

1993 Designed by NSA1995 SHA-0 tweaked to SHA-1

1998 SHA-0 collision attack2005 SHA-1 collision attack in theory2017 SHA-1 collision attack in practice

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - ▶ 5% of top 1M HTTPS servers prefer SHA-1

Can we do chosen-prefix collisions?

I've had worse

1993 Designed by NSA
1995 SHA-0 tweaked to SHA-1
1998 SHA-0 collision attack
2005 SHA-1 collision attack in theorem

2017 SHA-1 collision attack in practice

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - ▶ 5% of top 1M HTTPS servers prefer SHA-1

Can we do chosen-prefix collisions?

Iust a flesh wound.

1993 Designed by NSA
1995 SHA-0 tweaked to SHA-1
1998 SHA-0 collision attack
2005 SHA-1 collision attack in theory
2017 SHA-1 collision attack in practic

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - ▶ 5% of top 1M HTTPS servers prefer SHA-1

Can we do chosen-prefix collisions?

Gaëtan Leurent, Thomas Peyrin

1993 Designed by NSA
1995 SHA-0 tweaked to SHA-1
1998 SHA-0 collision attack
2005 SHA-1 collision attack in theory
2017 SHA-1 collision attack in practice

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - ▶ 5% of top 1M HTTPS servers prefer SHA-1

Can we do chosen-prefix collisions?

Gaëtan Leurent, Thomas Peyrin

Random Oracles in the Real World

Alright. We'll call it a draw.

1993 Designed by NSA

- 1995 SHA-0 tweaked to SHA-1
- 1998 SHA-0 collision attack
- 2005 SHA-1 collision attack in theory
- 2017 SHA-1 collision attack in practice

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - 5% of top 1M HTTPS servers prefer SHA-1

Can we do chosen-prefix collisions?

Gaëtan Leurent, Thomas Peyrin

Random Oracles in the Real World

Alright. We'll call it a draw.

1993 Designed by NSA

- 1995 SHA-0 tweaked to SHA-1
- 1998 SHA-0 collision attack
- 2005 SHA-1 collision attack in theory
- 2017 SHA-1 collision attack in practice

SHA-1 in 2018

- Being phased out of web certificates
 - Still possible to buy SHA-1 certificates
 - Still accepted by many email clients
- Still used to authenticated handshake messages
 - 5% of top 1M HTTPS servers prefer SHA-1
- Can we do chosen-prefix collisions?

Random Oracles in the Real World

Alright. We'll call it a draw.

Chosen-prefix collision attack

Differential trails

- Start from linear core trail
- Non-linear part connects to arbitrary input differential
- Relaxing the last rounds \sim output difference set S

- Application to SHA-1
 - ► |S| = 192
 - Complexity: 2^{77.1}

[Stevens, Eurocrypt'13]

New techniques

- 1 Larger set of output differences for SHA-1
- 2 Multi-block technique using a single core trail
- **3** Dynamic selection of near-collision targets (clustering)
- ▶ Complexity: 2^{66.9} 2^{69.3} (depending on assumptions for NL part)
- Almost practical !

Gaëtan Leurent, Thomas Peyrin

 $\begin{array}{c} (192 \rightarrow 8768) \\ |\mathcal{S} \approx 2^{30}| \end{array}$

New techniques

- **1** Larger set of output differences for SHA-1
- 2 Multi-block technique using a single core trail
- **3** Dynamic selection of near-collision targets (clustering)
- Complexity: $2^{66.9} 2^{69.3}$ (depending on assumptions for NL part)
- Almost practical !

Gaëtan Leurent, Thomas Peyrin

 $\begin{array}{c} (192 \rightarrow 8768) \\ |\mathcal{S} \approx 2^{30}| \end{array}$