Make AES great again!

Nathan Keller Bar Ilan University

Joint work with Achiya Bar-On, Orr Dunkelman, Eyal Ronen, and Adi Shamir

- The most common symmetric key primitive.
- Maps an b-bit plaintext P to an b-bit ciphertext C, using an n-bit key K.

Reduced-round variants

- Most block ciphers are iterative, i.e., composed of similar small units called rounds.
- We consider attacks not only on the full cipher but also on reduced-round variants.

• Motivation:

- Understand security margin.
- Attacks tend to improve.
- Reduced-round variants used in other primitives.

A "good" block cipher?

- We define the security level of a variant as log of the complexity of the best attack on it.
 - "For a good block cipher, the security level should grow exponentially with the number of rounds" (folclore)
- A bad block cipher: DES
 - Security grows only linearly in the number of rounds, due to differential and linear cryptanalysis.

Is AES a "good" block cipher?

Number of rounds	Security level (in bits)	Best attack	Year of publication
4	10	2 ¹⁰	1996
5	32	2 ³²	2000
6	42	2 ⁴²	2000
7	99	2 ⁹⁹	2013
8	128	none	-

 Does security grow exponentially with the number of rounds?

Is AES a "good" block cipher?

 Does security grow exponentially with the number of rounds?

No!

Our new result

- 5-round AES used as a component in: WEM, Hound, ELmD
- Best previous attacks on 5-round AES:

Technique	Complexity	Year
Square	2 ³²	2000
Imp. Differential	2 ³²	2001
Үоуо	2 ³²	2017
Mixture Differential	2 ³²	2018

Our new result

- 5-round AES used as a component in: WEM, Hound, ELmD
- Best previous attacks on 5-round AES:

Technique	Complexity	Year
Square	2 ³²	2000
Imp. Differential	2 ³²	2001
Үоуо	2 ³²	2017
Mixture Differential	2 ³²	2018

Our attack: 2²²

We make AES great again!

Updated security level of reduced-round AES:

Number of rounds	Security level (in bits)	Best attack	Year of publication
4	10	2 ¹⁰	1996
5	22	2 ²²	2018
6	42	2 ⁴²	2000
7	99	2 ⁹⁹	2013
8	128	none	-

 Does security grow exponentially with the number of rounds?

We make AES great again!

Updated security level of reduced-round AES:

 Does security grow exponentially with the number of rounds?

Yes!

Thanks for listening!